1234567891011121314151617181920212223242526272829303132333435363738 |
- using LinearOperators
- using MatrixDepot
- function getDivGrad(n1,n2,n3)
- # D = getDivGrad(n1,n2,n3)
- # builds 3D divergence operator
- D1 = kron(speye(n3),kron(speye(n2),ddx(n1)))
- D2 = kron(speye(n3),kron(ddx(n2),speye(n1)))
- D3 = kron(ddx(n3),kron(speye(n2),speye(n1)))
- Div = [D1 D2 D3]
- return Div*Div'
- end
- function ddx(n)
- # generate 1D finite difference on staggered grid
- return d = spdiags(ones(n)*[-1 1],[0,1],n,n+1)
- end
- function spdiags(B,d,m,n)
- # A = spdiags(B,d,m,n)
- # creates a sparse matrix from its diagonals
- d = d[:]
- p = length(d)
- len = zeros(p+1,1)
- for k = 1:p
- len[k+1] = round.(Int,len[k]+length(max(1,1-d[k]):min(m,n-d[k])))
- end
- a = zeros(round.(Int,len[p+1]),3)
- for k = 1:p
- # Append new d[k]-th diagonal to compact form
- i = max(1,1-d[k]):min(m,n-d[k])
- a[(round.(Int,len[k])+1):round.(Int,len[k+1]),:] = [i i+d[k] B[i+(m>=n)*d[k],k]]
- end
- A = sparse(round.(Int,a[:,1]),round.(Int,a[:,2]),a[:,3],m,n)
- return A
- end
|